Наведемо декілька рикладів побудови моделей.  

Наведемо декілька рикладів побудови моделей.

Рис. 15.2. Ієрархічна модель

Рис.15.1

Модель і моделювання – універсальні поняття , атрибути одного із найбільш потужних методів познання в будь-якій професійный галузі.

Не існує загальної теорії побудови моделей. Побудова моделі – системна задача, що потребує аналіза і сінтеза початкових даних, гіпотез, теорій, знань спеціалістів. Системний підхід не тільки дозволяє побудувати модель реальної системи, але й використати її для оцінки системи, наприклад, для оцінки ефективності управління та функціонування.

Яскрави­ми прикладами системного підходу (широкого охоплення фактів та їх де­тального аналізу) насичені праці В.І. Вернадського, який першим вста­новив єдність органічної та неорганіч­ної природи і необхідність вивчення біосфери як єдиного комплексу.

Сьогодні проблеми взаємодії люди­ни і біосфери вкрай актуальні. Матема­тики та ІТ-спеціалісти у вивченні цих процесів відіграють не меншу роль, ніж в еволюції фізики та техніки. Організа­ція таких досліджень надзвичайно складна, оскільки потребує участі спе­ціалістів різних галузей, які говорять на різних "професійних мовах". Система формальних моделей може стати єди­ним інтерпретатором, здатним створи­ти "загальну мову", сформулювати ви­моги до інформації і, врешті-решт, бути архітектором тих систем, що стануть скелетом міждисциплінарного харак­теру.

Означений підхід носить загальний характер. Тріумф молекулярної біології в останні роки, успіхи у дослідженні генетичного коду, моделювання окре­мих функцій людського організму, ро­ботизація, пошуки в галузі штучного інтелекту, макро- і мікроекономічні си­стеми — усе це досягнення галузевих наук методами системного підходу та інформаційних технологій.

Поки що йшлося про природничі науки. А як виглядають справи в гума­нітарних і соціальних науках, де вольо­вий людський фактор має суттєвий вплив і погано піддається формалізації?

Плутанина і суперечності, характерні для широкого спектра неприродничих наук, дають всі підстави стверджувати, що процеси в цих науках також по­винні розглядатись як "складні систе­ми" з відповідними інформаційними мо­делями.



Хід будь-якого суспільного проце­су залежить тією чи іншою мірою від людей, від їх поведінки і рішень. Але дії людей, врешті-решт, не такі вже довільні, ніж це може здаватися, і мо­тивація цих дій лежить у матеріальній єдності життя. Видатний фізик-теоретик Е. Шредінгер у своїй книжці "Що таке життя з точки зору фізики" дійшов висновку, що найбільшу ймовірність реалізації має той процес, який є най­більш економічним з погляду енерге­тики. Такими процесами є стабільні про­цеси. Саме тому прагнення зберегти стабільність свого колективу, фірми, свого класу, національної спільноти є однією з найпотужніших пружин, що підтримують функціонування механізму суспільної еволюції.

Це класичні системи зі зворотними зв'язками і визначеною цільовою функ­цією. Незважаючи на великі труднощі врахування "вольового фактору", такі системи, як і суто фізичні, піддаються моделюванню з різними траєкторіями перебігу процесу залежно від цього самого вольового впливу. Для цього вже існують і розвиваються матема­тична теорія ігор, теорія розпізнаван­ня, системна динаміка та ін. Враховую­чи світові тенденції до інтеграції та гло­балізації, можна припустити, що в май­бутньому суспільні системи будуть тільки ускладнюватись, і їх "математиза­ція" є єдиною альтернативою більш-менш оптимального розвитку.

У цьому коротенькому огляді зроб­лено акцент лише на одній думці: на людство звалилася така злива інфор­мації, а об'єкти досліджень стали на­стільки складними, що одного життя людини вже не вистачає для засвоєння накопичених пращурами знань, а тим більше для їх поглиблення. Потрібен невмирущий "машинний" розум у виг­ляді баз даних, баз знань, моделей об'єктів і процесів. Поки що це не аб­солют, а лише тенденція, але тенденція з усіх без винятку сферах людської діяльності, і тільки той досягне успіху, хто "впишеться" в цю тенденцію.

Модель – це відображення фізичної системи (объекта) на математичну систему, наприклад, математичний аппарат рівнянь. Будь-яка модель створюється і досліджується при певних припущеннях, гипотезах.

Приклад.Розглянемо фізичну систему: тіло масою m, на яке діє сила F, скочується нахиленою площиною з прискоренням а. Досліджуя такі системи, Н’ютон одержав математичне відношення: F=ma. Це математична модель фізичної системи. При опису цієї системи (побудові цієї моделі) були зробленні наступні припущення: 1) поверхня ідеальна (тобто коеф іцієнт тертя дорівнює нулю); 2) тіло знаходиться у вакумі ( тобто опір повітря дорівнює нулю); 3) маса тіла незмінна; 4) тіло рухається з однаковим постійним прискоренням в будь- якій точці.

Класифікацію моделей проводять по різним критеріям. Ми будемо використовувати найбільш просту і практичну класифікацію.

Модель називається статичною, якщо серед параметрів, що приймають учать в її описі, немає часового параметру.

Модель динамічна, якщо серед її параметрів є часовий параметр, тобто вона відображає систему (процеси в системі) в часі.

Приклад. Модель - динамічна модель шляху при вільному падіння тіла.

Модель дискретна, якщо вона описує поведінку системи в дискретні моменти часу.

Приклад. Якщо розглядати рух тільки в моменти , то модель чи часова послідовність S0=0, S1=g/2, S2=2g, S3=9g/2, :, S10=50g може служити дискретною моделлю, вільно падаючого тіла.

Модель неперервна, якщо вона описує поведінку системи для всіх моментів часу з деякого проміжку часу.

Приклад. Модель неперервна в проміжку часу (0; 100).

Модель імітаційна, якщо вона призначена для випробовування або вивчення можливих напрямків розвитку та поведінки об’єкта через варіювання деяких чи всіх параметрів моделі.

Імітаційне моделювання – один з найбільш потужних інструментів аналізу, якими володіють люди, відповідальний за розробку і функціонування складних процесів і систем.

Всі імітаційні моделі являють собою моделі типу, так званого, «чорного ящика». Це означає, що вони забезпечують видачу вихідного сигналу системи в тому разі, коли на її підсистеми поступає вхідний сигнал. Тому для одержання результатів необхідно здійснити «прогон» імітаційних моделей, а не «вирішувати» їх. Імітаційні моделі не здатні формувати своє рішення у тому вигляді, в якому це має місце в аналітичних моделях, а можуть лише служити як засіб для аналізу поведінки системи в умовах, які задаються експериментом. Таким чином, імітаційне моделювання – не теорія, а методологія вирішення проблем.

Модель детермінована, якщо кожному набору параметрів відповідає цілком визначений і однозначний набір вихідних параметрів; в протилежному випадку – модель не детермінована, стохастатична.

Модель функціональна, якщо її можна представити у вигляді системи деяких функціональних відношень. Наприклад , .

Модель логічна, якщо вона представлена логічними функціями. Наприклад, однорозрядний суматор може бути відображений такими рівняннями: Σ = xy v xy, с = xy

Модель алгоритмічна, якщо вона описана алгоритмом чи комплексом алгоритмів, що визначають її функціонування.

Модель структурна, якщо вона представлена наприклад, структурою даних і відношеннями між ними.

Модель ієрархічна (деревоподібна), якщо представлена якоюсь ієрархічною структурою (деревом). (Рис .15.2)

Модель мережева, якщо вона представлена мереженою структурою, наприклад локальною мережею з’єднання, комп’ютерів.

Модель натурна, якщо вона є матеріальною копією об’єкта моделювання, наприклад глобус, як модель земної кулі.

Тип моделі залежать від інформативної сутності моделюючої системи, від зв’язків і відношень між її підсистемами і елементів, а не від фізичної природи. Границі між моделями різного типу досить умовні. Скоріше можемо говорити про різні режими використання моделей – функціональний, імітаційний, стахостатичний і т.д.

Основні властивості будь-якої моделі:

· цілеспрямованість – модель завжди відображує якусь систему, тобто має певну ціль;

· спрощеність – модель відображає тільки суттєві сторони об’єкта і, крім того, повинна бути простою для дослідження і відтворення;

· адекватність – модель повинна успішно описувати моделюючу систему в рамках цільової орієнтації;

· інформативність – модель повинна містити достатню інформацію про систему (в рамках гіпотез, що прийняті при створенні моделі) і повинна надавати можливість одержувати нову інформацію;

· повнота – в моделі повинні бути передбачені всі основні зв’язки і відношення, необхідні для забезпечення цілі моделювання.


0768707073102057.html
0768759553693119.html
    PR.RU™